

WORKSHOP

Test and Assurance of Non-Volatile Memory Devices for Space

Ted Wilcox Radiation Effects and Analysis Group, Code 561 NASA Goddard Space Flight Center

Acronyms

- CME Coronal Mass Ejection
- CMOS Complementary Metal Oxide Semiconductor
- COTS Commercial Off The Shelf
- DDD Displacement Damage Dose
- ECC Error Correcting Code
- EDAC Error Detection and Correction
- FPGA Field Programmable Gate Array
- LEO Low Earth Orbit
- LET Linear Energy Transfer
- MEAL Mission, Environment, Application, Lifetime
- MLC Multi-Level Cell
- NVM Non-Volatile Memory
- SEB Single-Event Burnout
- SEE Single-Event Effect
- SEFI Single-Event Functional Interrupt
- SEGR Single-Event Gate Rupture
- SEL Single-Event Latchup
- SET Single-Event Transient
- SEU Single-Event Upset

Purpose of this talk

- 1. Space Radiation Background
 - Where is this stuff coming from, and when should I worry?
- 2. Effects on Electronic Parts and Systems
 - What are my memories going to do, and why do we test?
- 3. NVM Test Results, Common Behaviors, and Implications for Systems

Three Primary Space Radiation Sources

The Sun

Three Primary Space Radiation Sources

- CMEs (proton rich)
- ☐ Flares (heavy ion rich)

- □ Not a perfect dipole
- Protons and Electrons trapped at different altitudes and energies

- Energetic supernovae remnants (~GeV, Z=1-92)
- Originate outside of our solar system

Images: NASA FERMI X-ray telescope, Solar Dynamics Observatory, Janet Barth (radhome.gsfc.nasa.gov)

Solar Particle Events (SPE)

By NOAA's definition (broadest in terms of SPE classification)

S1 (minor) SPE is in progress whenever the >10 MeV proton flux exceeds 10 proton flux units (PFUs, #/cm2/sr/s)

Scale	Description	Effect	Physical measure (Flux level of >= 10 MeV particles)	Average Frequency (1 cycle = 11 years)
S 5	Extreme	Biological: Unavoidable high radiation hazard to astronauts on EVA (extra-vehicular activity); passengers and crew in high-flying aircraft at high latitudes may be exposed to radiation risk. Satellite operations: Satellites may be rendered useless, memory impacts can cause loss of control, may cause serious noise in image data, star-trackers may be unable to locate sources; permanent damage to solar panels possible. Other systems: Complete blackout of HF (high frequency) communications possible through the polar regions, and position errors make navigation operations extremely difficult.	10 ⁵	Fewer than 1 per cycle
S-4	Severe	Biological: Unavoidable radiation hazard to astronauts on EVA; passengers and crew in high-flying aircraft at high latitudes may be exposed to radiation risk. Satellite operations: May experience memory device problems and noise on imaging systems; star-tracker problems may cause orientation problems, and solar panel efficiency can be degraded. Other systems: Blackout of HF radio communications through the polar regions and increased navigation errors over several days are likely.	104	3 per cycle
S 3	Strong	Biological: Radiation hazard avoidance recommended for astronauts on EVA; passengers and crew in high-flying aircraft at high latitudes may be exposed to radiation risk. Satellite operations: Single-event upsets, noise in imaging systems, and slight reduction of efficiency in solar panel are likely. Other systems: Degraded HF radio propagation through the polar regions and navigation position errors likely.	10 ³	10 per cycle
S 2	Moderate	Biological: Passengers and crew in high-flying aircraft at high latitudes may be exposed to elevated radiation risk. Satellite operations: Infrequent single-event upsets possible. Other systems: Small effects on HF propagation through the polar regions and navigation at polar cap locations possibly affected.	10 ²	25 per cycle
S 1	Minor	Biological: None. Satellite operations: None. Other systems: Minor impacts on HF radio in the polar regions.	10	50 per cycle

South Atlantic Anomaly

- Protons are present at lower altitudes over South America and the South Atlantic
- May require operational changes when entering South Atlantic Anomaly

K. A. LaBel, et al., IEEE REDW, 1993.

EFFECTS ON ELECTRONIC PARTS

Broad Radiation Effects on EEEE Parts

Gradual Degradation

- Will it survive the mission length without failure?
- Total Ionizing Dose (TID), Displacement Damage Dose (DDD/TNID)

Sudden Failure

- Could the part fail at any time?
- Single-Event Latchup (SEL), Gate Rupture (SEGR), and Burnout (SEB)

Transient Anomalies

- Will the system tolerate glitches and potentially operate correctly through a solar storm?
- Single-Event Upsets (SEU), Transients (SET), Functional Interrupts (SEFI)...

Total Ionizing Dose (TID)

- First question we're asked: "What are the krads for this mission?"
 - Measured in rad or gray, material specific
 - 1 gray = 100 rad
- Energetic photons or charged particles (e⁻, p⁺) interact with mass:
 - 1. electron-hole pair generation
 - 2. recombination of some electrons and holes
 - 3. transport of remaining carriers by drift and diffusion
 - 4. eventual trapping of holes in defects or interfaces

- Increased leakage current or power supply current
- ✓ Transistor or amplifier gains reduced
- ✓ Voltage regulators drifting from programmed output
- ✓ Non-volatile memories unable to erase
- ✓ High-speed CMOS logic slowed
- ✓ Data converter offsets
- ✓ Increased dark current in image sensors
- ✓ Frequency shifts in oscillators
- ✓ Coloring/darkening in optical materials
- Complex devices suddenly failing

Long-term accumulated effect -> life-limiting

Mitigating TID in Electrical Systems

- Shield either add more, or characterize what you already have
- Parts find alternatives with better performance
- Design tolerate larger parametric drift
- Operations powering down during high-dose phases may help
- Sparing/Redundancy only relevant if parts degrade slower when off

Single-Event Effects (SEE)

 Instantaneous and/or transient effects caused by a single particle striking a sensitive portion of an electronic device

- Electron-hole pairs are generated along an "ion track" through the device
 - Often caused by a "heavy ion" (direct ionization)
 - Or, a proton colliding into semiconductor material and generating fission fragments that indirectly ionize
- Result may be destructive or non-destructive. It may be missioncritical or irrelevant.

Single-event transients in an LM139 comparator

Consequences of SEE

NASA

- Destructive: Random events capable of ending a mission on day 1 or day 1,000
 - Single-event latchup (SEL)
 - Gate Rupture (SEGR)
 - Burnout (SEB)
- Avoid this threat altogether by choosing immune technologies or testing for susceptibility
- Difficult to predict a priori

- Non-Destructive: Random data corruption, glitches, and resets.
- The most complex radiation effects at the design level; generally not solvable by parts selection alone
- Must mitigate, tolerate, or ignore based on MEAL
- Of particular concern with many computing systems!

Mitigating SEE

Avoid destructive SEE at all cost

- Highest consequences of all radiation effects hazards
- Derate within a tested safe operating area if possible
- ☐ Avoid unknown, untested parts
- SEL may be mitigated with current-limiting and power-cycling, but the risk is non-zero

☐ Characterize and mitigate non-destructive SEE

- ☐ Filtered power supplies
- Redundant computers, hardened FPGA designs
- EDAC on memories
- ☐ Watchdog timers and autonomous resets
- ☐ Power limiting to susceptible devices
- ☐ Independent power cycling/reset for subsystems
- ☐ Identify the risks, explore the possible consequences

Primarily, a parts selection concern

Primarily, an electrical circuit/system design concern

SEE Testing Photos

SEE Facilities

NVM TEST RESULTS, COMMON BEHAVIORS, AND IMPLICATIONS FOR SYSTEMS

Low-Level Characterization of Non-Volatile Memory

Part Number	MT29F8T08EWLGEM5	MT29F8T08EWLKEM5	H25G9TC18CX488
Manufacturer	Micron	Micron	SK Hynix
3D NAND Technology	96 Layers, SLC/TLC Floating Gate (B27C)	176 Layers, SLC/TLC Replacement Gate (B47T)	176 Layers, SLC/TLC Charge Trap (V7)
Advertised Die Capacity	512 Gb TLC	512 Gb TLC	512 Gb TLC
Total Capacity	8 Tb TLC (16 die)	8 Tb TLC (16 die)	512 Gb TLC (1 die)
LDC	IYG22	2PK22	212T
Tested Voltage	Vcc: 2.5 V - 3.3 V Vccq: 1.25 V	Vcc: 2.5 V - 3.3 V Vccq: 1.25 V	Vcc: 3.3 V Vccq: 1.25 V
Package	132 LBGA	132 LBGA	152 BGA
		00	A series and a ser

Wilcox, IEEE NSREC 2023 Dataworkshop

Prediction of N bit upsets (SEU) per year per device in a particular environment.

Error Signatures of Piece Part Memories

- Single Event Effects (totally random over time, higher with solar activity):
 - Individual random bits are changed.*
 - Isolated blocks are inaccessible.
 - Sequential or repetitive data errors (every N bytes, every N pages, etc.).
 - Sudden supply current changes (potentially destructive).
 - Reads, programs, or erases fail or take longer to complete.
 - Devices are suddenly unresponsive.
- Total lonizing Dose (cumulative)
 - Long term data corruption if not refreshed periodically.*
 - Erase failures at moderate dose levels (usually the first to go)*
 - Long term increases in supply current
 - Eventual complete failure of device

*Non-charge based (MRAM, FRAM, ReRAM, etc) are not as prone to bit cell errors or erase circuitry charge pump failures.

Informative to System (HW/FW) Design

High-Level Effects (Where ECC Fails)

Large portions of blocks and pages zero'd out

Static devices that start drawing current

ECC built for terrestrial applications may handle upsets from ionizing radiation in space – But has no chance against block-level failures and other SEFI unique to ionizing radiation environment

Read/write operations that fail to complete; devices that fail to respond entirely

Cross Section (Nov. 2019 LBNL Heavy Ions)

Informative to Operations

Wilcox, Single Event Effects Symposium, 2022

... and Architectures

Tackling the problem from the system first...

How do individual bits behave under irradiation?

How does the system react when it is under irradiation?

Very High-Level SEE Testing

	-	100	-1 1 11 1	et	
Part	Target	Unique Parts Tested	Threshold LET for Unrecoverable	Fluence at Highest Passing LET	
Micron (SLC)	Entire Device	6	9.1 < x < 17.3	1x105/cm2	
Micron (TLC)	Entire Device	7	2.5 < x < 5.1	9.4x10 ⁴ /cm ²	
Swissbit	Flash	3	5.1 < x < 9.1	2x105/cm2	
Swissbit	Controller/DRAM	2	x > 17.3	6.59x10 ³ /cm ²	
Exascend	Flash	2	x < 5.1	N/A	
Exascend	Controller/DRAM	3	2.5 < x < 5.1	4.61x10 ⁴ /cm ²	
WD	Entire Device	2	5.1 < x < 9.1	8.65x105/cm2	

Wilcox, NSREC 2024

Very High-Level TID Testing

Error Signatures at the Drive Level

Single-Event Effects

- Suddenly unresponsive to any command.
- Locked into read-only mode.
- Visible to system but incapable of any reads or writes.
- Sudden supply current changes
- Marked decrease in read or write speeds.
- Changes in device ID and other meta data.

Total Ionizing Dose

- Degraded read/write speeds
- Long-term data corruption
- Slow increase supply current
- Failure to boot
- Eventual failure to operate

None of these are expected by a normal consumer of these are expected by a normal consumer.

OS or firmware and may be poorly handled.

Operational Effects As a Result

- FPGA- or Microcontroller-based tests of piece parts can be crafted to detect, characterize, and recover virtually any effect observed in a discrete memory.
- With our OS-based testers using commercial solid-state drives, we observe
 - Los Robust software will expect memory failures that are
 - Une not relevant to automotive or datacenter
 - i ingn latency
 - Inak applications.
 (tne drive firmware itself)
 - Unimended activation while sleeping
 - Test challenges due to black box activities within drive (re-mapping, rebuilding)
 - Essentially no flipped bits at user level
 - Lack of transparency re: operations that failed during beam or when failure occurred
 - Odd device-specific behavior, like capacity changes or device lockdown

Classical Radiation Hardness Assurance

All predicated upon up-front knowledge of parts, testing of part performance, and system adjustments to compensate

Challenges faced in a world of systems

Survivability

- Must survive until needed
- Entire mission?
- Screening for early failures in components

Availability

- Must perform when necessary
- Subset of time on orbit
- Operational modes
- Environmental response

Criticality

- Impact to the system
- Part or subsystem function
- Mission objectives

Reliability

- Resultant of all
- Many aspects and disciplines
- Known unknowns

- We are working complex interactions of hardware and software
- To be clear: radiation is not fixable with software or fault-tolerant design, but they are part of the solution.
- There are always transistor-level failure modes that may exist
- May be masked by relatively benign (in the classical sense) errors that are not handled by a system not design for radiation effects.

Final Thoughts

- Zero trust of unknown hardware systems (e.g., a datacenter SSD) operating in unplanned environments (e.g., LEO)
- Verify, retry, recover, or restart when needed with minimal overhead
- I expect a reduction in confidence in test data at the system/block level; significant unknown unknowns are hard to find. However, parts level testing is of lesser value if the system is a black box.
- Intrinsically radiation-tolerant solid state drives do not appear to exist
- Memories have memory consider that effects may persist and yet be recoverable
- Certain memories may accumulate errors when turned off; consider implications of 8 year interplanetary cruise on a COTS flash array